A new superconvergent collocation method for eigenvalue problems
نویسنده
چکیده
Here we propose a new method based on projections for the approximate solution of eigenvalue problems. For an integral operator with a smooth kernel, using an interpolatory projection at Gauss points onto the space of (discontinuous) piecewise polynomials of degree ≤ r−1, we show that the proposed method exhibits an error of the order of 4r for eigenvalue approximation and of the order of 3r for spectral subspace approximation. In the case of a simple eigenvalue, we show that by using an iteration technique, an eigenvector approximation of the order 4r can be obtained. This improves upon the order 2r for eigenvalue approximation in the collocation/iterated collocation method and the orders r and 2r for spectral subspace approximation in the collocation method and the iterated collocation method, respectively. We illustrate this improvement in the order of convergence by numerical examples.
منابع مشابه
On the Formulation and Implementation of Optimal Superconvergent One Step Quadratic Spline Collocation Methods for Elliptic Problems
We formulate new optimal quadratic spline collocation methods for the solution of various elliptic boundary value problems in the unit square. These methods are constructed so that the collocation equations can be solved using a matrix decomposition algorithm. The results of numerical experiments exhibit the expected optimal global accuracy as well as superconvergence phenomena. AMS subject cla...
متن کاملAnalysis of a New Error Estimate for Collocation Methods Applied to Singular Boundary Value Problems
We discuss an a-posteriori error estimate for the numerical solution of boundary value problems for nonlinear systems of ordinary differential equations with a singularity of the first kind. The estimate for the global error of an approximation obtained by collocation with piecewise polynomial functions is based on the defect correction principle. We prove that for collocation methods which are...
متن کاملA Spectral Collocation Method for Eigenvalue Problems of Compact Integral Operators
We propose and analyze a new spectral collocation method to solve eigenvalue problems of compact integral operators, particularly, piecewise smooth operator kernels and weakly singular operator kernels of the form 1 |t−s|μ , 0 < μ < 1. We prove that the convergence rate of eigenvalue approximation depends upon the smoothness of the corresponding eigenfunctions for piecewise smooth kernels. On t...
متن کاملSuperconvergent Interpolants for the Collocation Solution of Boundary Value Ordinary Differential Equations
A long-standing open question associated with the use of collocation methods for boundary value ordinary differential equations is concerned with the development of a high order continuous solution approximation to augment the high order discrete solution approximation, obtained at the mesh points which subdivide the problem interval. It is well known that the use of collocation at Gauss points...
متن کاملNumerical solution of singular ODE eigenvalue problems in electronic structure computations
We put forward a new method for the solution of eigenvalue problems for (systems of) ordinary differential equations, where our main focus is on eigenvalue problems for singular Schrödinger equations arising for example in electronic structure computations. In most established standard methods, the generation of the starting values for the computation of eigenvalues of higher index is a critica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 75 شماره
صفحات -
تاریخ انتشار 2006